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In this study, direct numerical simulations and high-resolved large eddy simulations
of turbulent Rayleigh–Bénard convection were conducted with a fluid of Prandtl
number Pr = 0.7 in a long rectangular cell of aspect ratio unity in the cross-section
and periodic boundaries in a horizontal longitudinal direction. The analysis of the
thermal and kinetic energy spectra suggests that temperature and velocity fields
are correlated within the thermal boundary layers and tend to be uncorrelated in the
core region of the flow. A tendency of decorrelation of the temperature and velocity
fields is also observed for increasing Ra when the flow has become fully turbulent,
which is thought to characterize this regime. This argument is also supported by the
analysis of the correlation of the turbulent fluctuations |u|′ and θ ′. The plume and
mixing layer dominated region is found to be separated from the thermal dissipation
rates of the bulk and conductive sublayer by the inflection points of the probability
density function (PDF). In order to analyse the contributions of bulk, boundary
layers and plumes to the mean heat transfer, the thermal dissipation rate PDFs of
four different Ra are integrated over these three regions. Hence, it is shown that
the core region is dominated by the turbulent fluctuations of the thermal dissipation
rate throughout the range of simulated Ra , whereas the contributions from the
conductive sublayer due to turbulent fluctuations increase rapidly with Ra . The latter
contradicts results by He, Tong & Xia (Phys. Rev. Lett., vol. 98, 2007). The results
also show that the plumes and mixing layers are increasingly dominated by the mean
gradient contributions. The PDFs of the core region are compared to an analytical
scaling law for passive scalar turbulence which is found to be in good agreement
with the results of the present study. It is noted that the core region scaling seems to
approach the behaviour of a passive scalar as Ra increases, i.e. it changes from pure
exponential to a stretched exponential scaling.

1. Introduction
Rayleigh–Bénard convection is one of the classical problems in fluid mechanics

where a fluid of Prandtl number Pr = ν̂/κ̂ is typically bound by a bottom and a top
wall which are heated and cooled, respectively. The Rayleigh number

Ra = α̂ĝĤ 3 �T̂

ν̂κ̂
(1.1)
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is a non-dimensional parameter for the measure of the ratio of buoyancy and diffusive
forces, where α̂, ν̂ and κ̂ denote the thermal expansion coefficient, the kinematic
viscosity and the thermal diffusivity, respectively, ĝ is the gravitational acceleration,
Ĥ the height of the fluid layer and �T̂ the vertical temperature difference (we denote
dimensional quantities with .̂ and dimensionless without).

For decades there has been discussion of the scaling of the Nusselt–Rayleigh
relation, i.e. Nu ∼ Raβ , where the Nusselt number Nu = |∂T̂ /∂ẑ|wallĤ /�T̂ is a measure
for the effectivity of the convective heat transport and ẑ denotes the vertical direction.
The scaling and structure of the thermal boundary layers along the axis of a cylindrical
container was studied in great detail by du Puits et al. (2007) for a wide range of
aspect ratios and 109 � Ra � 1012. They found that the shape of the boundary layer
is almost independent of the cell’s aspect ratio. Maystrenko, Resagk & Thess (2007)
performed detailed temperature measurements in the thermal boundary layers at
different positions in a long rectangular cell and found that the structure of the
thermal boundary layer changes significantly in the longitudinal direction which they
considered to be an effect of the mean flow properties.

As far as the Nusselt–Rayleigh relation is concerned various experiments in a wide
range of Rayleigh numbers found almost as many exponents, e.g. Roche, Castaing
& Hebral (2001) obtained β = 0.5 for Ra > 1012. Niemela et al. (2000) used Helium
near its critical point in order to conduct measurements in a cylindrical container
with 106 � Ra � 1017. After accounting for the finite conductivity effects of the lateral
walls they obtained an exponent β = 0.32, whereas Castaing et al. (1989) measured
β ≈ 0.286 in the range 4 × 107 � Ra � 1012. In order to explain the discrepancy of
their exponent with other measurements they proposed a new theoretical model
accounting for the plumes separating from the boundary layers. In contrast to the
classical 1/3-scaling or the 1/2-scaling suggested by Kraichnan (1962) this leads to
an exponent of β = 2/7 which is in good agreement with their measurements and
results by Shraiman & Siggia (1990).

Direct numerical simulations (DNS) by Verzicco & Camussi (2003a, b) in a slender
cylindrical cell filled with fluid of Pr = 0.7 indicated that with increasing Rayleigh
number fluctuations of the velocity field began to dominate within the centre of the
cell. This behaviour was not found for the fluctuations of the temperature field, where
the thermal dissipation rates in the cell centre were found to vanish for Ra → ∞.

Grossmann & Lohse (2000, 2004) split the thermal dissipation rates ε̂θ = κ̂(∂T̂ /∂x̂i)
2

into contributions from plumes (pl) and turbulent background (bg) rather than
boundary layers (bl) and bulk, which is used for the kinetic dissipation rates
ε̂u = ν̂(∂û/∂x̂i)

2, where ûi is the velocity component in direction x̂i and T̂ denotes the
temperature:

ε̂u = ε̂u,bl + ε̂u,bulk, (1.2)

ε̂θ = ε̂θ,pl + ε̂θ,bg. (1.3)

From their subsequent theory they deduced an effective exponent β ≈ 0.29 for the
Prandtl number regime Pr ≈ 1, . . . , 7, but also pointed out that there is no universal
Nu–Ra scaling.

He, Tong & Xia (2007) experimentally measured the thermal dissipation rates of
Rayleigh–Bénard convection in a cylindrical cell filled with water. Decomposing the
thermal dissipation rates into contributions due to the mean temperature gradient

ε̂θ̄ = κ̂(∂
¯̂
T /∂x̂i)

2 and the fluctuating components ¯̂εθ ′ = ¯̂εθ − ε̂ θ̄ , where ¯̂εθ = κ̂(∂T̂ /∂x̂i)2

is the mean thermal dissipation rate, they found that in the bulk region of the cell



Thermal plumes in turbulent Rayleigh–Bénard convection 91

contributions due to the mean temperature gradient are negligible, i.e.

¯̂εθ � ¯̂εθ ′ (1.4)

and ¯̂εθ ′ ∼ Ra−0.33 was obtained for various locations outside the boundary layer. On
the other hand, within the boundary layers the fluctuating component amounted to
less than 1.5 % of the overall thermal dissipation rate

¯̂εθ � ε̂ θ̄ , (1.5)

where a scaling ε̂ θ̄ ∼ Ra0.63 was obtained. He et al. (2007) concluded that the above
scalings reflect an increasing dissipation of the thermal plumes, leading to a reduction
in the temperature fluctuations in the bulk and an increasing mean gradient near
the conducting walls, respectively. Therefore, they argued that thermal plumes and
boundary layers are two different dynamic structures which cannot be treated equally
as suggested by Grossmann & Lohse (2004).

Shishkina & Wagner (2006) also studied the Ra dependence of the thermal
dissipation rates by means of DNS, but in contrast to Verzicco & Camussi (2003a, b)
and He et al. (2007) they analysed instantaneous flow fields. They showed that the
relative contribution from the small scales εθ � εθ,max , where εθ,max is the largest
thermal dissipation rate found in the volume, continuously increases with Rayleigh
number as well as their percentage of the fluid volume. Hence, they concluded
that the turbulent background, which is associated with small temperature gradients,
dominates the flow field for Ra → ∞. At this point it has to be pointed out that
the results by Shishkina & Wagner (2006) are based on a volume-integrated analysis
trying to estimate the contributions of different scales to the mean heat transfer,
whereas the scalings (1.4) and (1.5) are based on time-averaged quantities that would
have to be integrated over the volume they represent. Recently, Shishkina & Wagner
(2008) managed to extract sheet-like thermal plumes from the bulk region of an
aspect ratio unity Rayleigh cell filled with fluid of Pr =5.4. Hence, it was possible
to investigate the properties of the thermal plumes numerically. Aspects of the local
heat transfer were analysed by Shishkina & Wagner (2007b).

However, the understanding of the heat transfer mechanisms and the regions
contributing to the mean heat transfer is still incomplete. In the present study the
instantaneous thermal dissipation rates are therefore analysed over a long period
of time rather than a single instantaneous flow field. Time series are compared for
different Ra from the onset of turbulence until a fully developed turbulent flow is
achieved. This allows us to distinguish between the contributions of certain features
of the flow, such as boundary layers, plumes and the bulk – and hence quantify their
respective contributions to the volume-averaged mean thermal dissipation rate and
evaluate their respective behaviour as a function of Ra . Thus, it is possible to obtain
a more complete picture of the distribution and behaviour of the thermal dissipation
rates and the interaction between the temperature and velocity fields in turbulent
Rayleigh–Bénard convection.

In § 2 an overview of the numerical procedure and the resolution of the flow
field is provided. Section 3 discusses the differences between the temperature and
velocity fields and their changes with Ra . Here, the influence of the wall distance
and the Rayleigh number on the turbulent thermal and kinetic energies and the
correlation between the temperature and the velocity fields are investigated. The
thermal dissipation rates are analysed in § 4 by means of probability density functions,
and the contributions of different features of the flow to the mean heat transfer
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ẑ/Ĥ ẑ/Ĥ
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Figure 1. Front and side view of the convection cell with temperature boundary conditions.

are estimated and the main heat transfer mechanisms are evaluated. Finally, the
conclusions are drawn in § 5.

2. Numerical procedure and resolution requirements
The present numerical simulations are conducted in a cubic geometry of squared

cross-section with Γ = Ŵ/Ĥ = 1, where Ĥ is the height and Ŵ the width of the
enclosed fluid. Periodic boundaries are employed in the longitudinal direction with
a length L̂ = 5Ĥ of the fluid (see figure 1). The horizontal walls are assumed to
be isothermal with non-dimensional temperatures θhot = +0.5 and θcold = −0.5 at
the bottom and the top walls, respectively. The adiabatic lateral periodic walls are
implemented by means of a zero temperature gradient perpendicular to the wall,
i.e. ∂θ/∂x = 0. No-slip and impermeability conditions are used for the solid walls, so
that velocities in i-direction ui |wall = 0.

The non-dimensionalization xi = x̂i/Ŵ , ui = ûi/(α̂ĝ�T̂ Ĥ )1/2, θ =(T̂ − T̂ 0)/�T̂ ,
p = p̂/(ρ̂α̂ĝĤ�T̂ ) and t = t̂(α̂ĝ�T̂ Ĥ )1/2/Ŵ is used in order to solve the incompressible
Navier–Stokes equations, where density variations are accounted for through the
Boussinesq approximation.

∂〈ui〉
∂xi

= 0,

∂〈ui〉
∂t

+ 〈uj 〉∂〈ui〉
∂xj

+
∂τij

∂xj

+
∂〈p〉
∂xi

= ν
∂2〈ui〉
∂x2

j

+ 〈θ〉δ3i ,

∂〈θ〉
∂t

+ 〈ui〉
∂〈θ〉
∂xi

+
∂hi

∂xi

= κ
∂2〈θ〉
∂x2

i

.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.1)

Here, ui(i = x, y, z) are the velocity components in i-direction, θ and p represent
the temperature and pressure, respectively, and δij is the Kronecker symbol; in this
case gravitational forces act in z-direction, i.e. the vertical direction. 〈·〉 denotes
volumetric averaging over any finite volume Vi. τij and hi are the subgrid scale
(SGS) shear stress tensor and heat flux vector, respectively. The non-dimensional
kinematic viscosity and thermal diffusivity are defined as ν = (Pr/(Γ 3Ra))1/2 and
κ = 1/(Γ 3RaPr)1/2, respectively.

The volume balance procedure by Schumann, Grötzbach & Kleiser (1979) is used
for the integration over the fluid cells and the solution is evolved in time by means
of the explicit Euler–Leapfrog scheme. Spatial derivatives and cell face velocities are
approximated by piecewise integrated fourth-order accurate polynomials, where the
velocity components are stored on staggered grids which are described in detail by
Shishkina & Wagner (2007a). The velocity pressure coupling is performed through
the projection method involving an elliptic solver by Swarztrauber (1974), where the
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equations are decoupled in the homogeneous direction by means of a fast Fourier
transform (FFT).

The flow field is initialized with a quiescent velocity field and the conduction
profile for the temperature field. In order to be independent of numerical errors
triggering convection after the initialization, small disturbances are superimposed
onto the temperature field in order to excite instabilities. However, these disturbances
are dissipated during the transient phase and do not have an effect once the solution
is in equilibrium, i.e. heat transfer between hot and cold walls and turbulence intensity
has reached a statistically steady state. Data for the statistical analysis is collected
over a period of 110, 80, 70 and 40 non-dimensional time units for Ra = 3.5 × 105,
3.5 × 106, 3.5 × 107 and 2.31 × 108, respectively.

In order to resolve the smallest relevant turbulent scales and the wall gradients
in the DNS the resolution of the flow field must be sufficiently high. Therefore, the
grid points are clustered in the vicinity of the walls using a hyperbolic tangential, so
that about 10 grid points are within the thermal boundary layer and the grid spacing
hVi

= (�x �y �z)1/3 in the core region satisfies the Grötzbach (1983) estimate for the
Kolmogorov scales ηk .

hVi
� ηk,Grö. ≡ π

Γ

√
Pr

((Nu − 1)Ra)1/4
(2.2)

At the highest Rayleigh number the resolution in the core region of the domain is
not high enough to resolve the Kolmogorov scales. In order to account for the SGS
effects, the tensor diffusivity model by Leonard & Winkelmans (1999) is applied to
top hat filtering (see Shishkina & Wagner 2007a),

τij ≡ 〈u′
iu

′
j 〉 =

1

12

∑
j 
=k

(�xk)
2 ∂〈ui〉

∂xk

∂〈uj 〉
∂xk

, (2.3)

hi ≡ 〈u′
iθ

′〉 =
1

12

∑
j 
=k

(�xk)
2 ∂〈ui〉

∂xk

∂〈θ〉
∂xk

, (2.4)

so that highly resolved large eddy simulations (LES) are performed for this Ra and for
reasons of comparability an additional LES simulation is performed at Ra = 3.5 × 107.
Table 1 shows the mean Nusselt numbers averaged in time and over the top and
bottom surfaces together with the Kolmogorov scales calculated from (2.2) and the
grid spacing hVi,max in the centre of the cell. It follows from table 1 that both LES
are resolved equally well in the core region. However, no near-wall model needs to
be employed, since the boundary layers are still well resolved. The numerical stability
of the time-advancement scheme is more restrictive than the turbulent time scales of
the flow, so the flows are well resolved temporally.

The resolution of the flow field is checked a posteriori by estimating the ratio of
the mean cell size of each finite volume Vi and the smallest scales of the velocity and
temperature fields, i.e. the Kolmogorov and Batchelor scales, respectively. These have
to satisfy the relations

hVi

πηk(Ra, Vi)
� 1 and

hVi

πηb(Ra, Vi)
� 1, (2.5)

where ηk(Ra, Vi) ≡ ν3/4/ε ′
u

1/4
and ε ′

u is the time-averaged turbulent kinetic dissipation

rate and the Batchelor scales are defined analogously by ηb(Ra, Vi) ≡ κ3/4/ε ′
θ

1/4

using the mean turbulent thermal dissipation rate ε ′
θ . Strictly this is valid only for
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3.5 × 107

3.5 × 105 3.5 × 106 2.31 × 108

Ra DNS DNS DNS LES LES
Mesh size 64 × 128 × 64 96 × 256 × 96 152 × 512 × 152 128 × 256 × 128 190 × 512 × 190

Nu 6.225 12.12 22.87 23.38 40.62
δθ 7.81 × 10−2 4.00 × 10−2 2.05 × 10−2 1.90 × 10−2 1.11 × 10−2

δu 1.12 × 10−1 8.93 × 10−2 7.14 × 10−2 5.72 × 10−2 4.92 × 10−2

|θe| 0.133 0.135 0.147 0.150 0.166
ηk,Grö. 7.17 × 10−2 2.35 × 10−2 1.58 × 10−2 1.57 × 10−2 8.57 × 10−3

max(ηk) 4.75 × 10−2 2.32 × 10−2 9.00 × 10−3 9.19 × 10−3 5.00 × 10−3

max(ηb) 2.25 × 10−2 3.26 × 10−2 1.76 × 10−2 1.74 × 10−2 1.15 × 10−2

hVi ,max 3.01 × 10−2 1.72 × 10−2 1.06 × 10−2 1.50 × 10−2 9.99 × 10−3

max(hVi
/πηk) 0.375 0.489 0.670 0.902 1.06

max(hVi
/πηb) 0.226 0.312 0.464 0.631 0.773

Table 1. Results of the numerical simulations: mean viscous and thermal boundary layer
thicknesses δu and δθ at x̂/Ŵ = 0.5, the temperature at the edge of the thermal boundary
layer θe and the mean Nusselt number. Kolmogorov scales estimated with (2.2) and simulation
results and the relative grid resolution is given for both the Kolmogorov and the Batchelor
scales.
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Figure 2. Ratio of the grid size compared to the (a) Kolmogorov and (b) Batchelor length
scales for Ra =3.5 × 107 calculated a posteriori through (2.5).

homogeneous isotropic turbulence, however, we think this is a reasonable approach
to obtain an indication of the resolution of the core region. Near the walls, where this
criterion does not hold the requirement to resolve the gradients is usually much more
restrictive. An example of the spatial resolution of the temperature and velocity fields
is given by figure 2 for Ra = 3.5 × 107 illustrating the sufficient resolution of the flow
field. It can be seen that for this case in the core region the resolution of the velocity
field is more critical than the temperature field. It is concluded that for Pr = 0.7 the
temperature field dictates the resolution requirements near the walls and the velocity
field in the core.

3. Interactions between temperature and velocity fields
Snapshots of the isosurfaces of the temperature fields are presented in figure 3. They

illustrate the formation of the thermal plumes for the four Rayleigh numbers spanning
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(a)

(b)

(c)

(d)

Figure 3. Snapshots of 16 instantaneous isotherms with |θ | � 0.1: (a) Ra =3.5 × 105,
(b) Ra = 3.5 × 106, (c) Ra = 3.5 × 107 and (d ) Ra =2.31 × 108.

about four orders of magnitude from the onset of turbulence until a fully developed
or hard turbulent flow field is reached (see Castaing et al. 1989). At the lowest Ra
two pairs of plumes are rising and falling, and hence forming the typical convection
rolls with their rotational axes orthogonal to the longitudinal direction of the cell. At
Ra = 3.5 × 107 the flow field becomes fully turbulent and many small plumes can be
observed. The interaction of the thermal plumes still causes a large scale circulation
of the flow. However, at this Rayleigh number the large-scale convection rolls are not
continuously maintained, but appear to become unstable, which temporarily leads
to a breakdown of the large-scale flow. At Ra =2.31 × 108 the temperature field is
entirely dominated by small-scale structures, so that a large-scale convection roll can
hardly be identified in the temperature field. This phenomenon will be discussed in
detail in § 3.3. In § 3.2, the boundary layer thicknesses are discussed and results are
provided by table 1.

3.1. Thermal and viscous dissipation rate analysis

A horizontal and a vertical cut through the centre of the cell illustrate the distribution
of the turbulent kinetic and thermal dissipation rates, ε ′

u and ε ′
θ , shown in figure 4(a–

d). The turbulent kinetic dissipation rate is almost constant in the core and increases
gradually within the boundary layer where viscosity effects come to bear. The turbulent
thermal dissipation rates, however, reflect a much more complex three-dimensional
variation which is also dependent on Ra . A plateau begins to form in the core
region as Ra increases indicating that in the core heat is dissipated more equally
at higher Rayleigh numbers. A local minimum of ε ′

θ is observed at the edge of
the thermal boundary layer, whereas a local maximum is found at the edge of
the viscous boundary layer of the sidewalls. Both local extrema are vanishing with
increasing Ra . Comparison of the kinetic and thermal turbulent dissipation rates
reveals that the latter are significantly smaller throughout the flow field, which could
not be expected for the considered fluid of Pr = 0.7. For a more detailed analysis the
ratio of both dissipation rates (∂u′/∂xi)2/(∂θ ′/∂xi)2 is investigated. Figures 4(e) and
4(f ) reveal that this ratio is greater than one in the bulk, but reduces towards the
walls. In the core region this ratio is increasing from approximately 7.5 to 20 from
the lowest to the highest simulated Rayleigh number which indicates that velocity
fluctuations are always dominant in this region. However, a minimum is found near
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Ĥ

ẑ
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Figure 4. Temporally averaged turbulent kinetic dissipation rates ε′
u (b, c) and thermal

dissipation rates ε′
θ (a, d) in the centre planes ẑ/Ĥ = 0.5 (a, b) and x̂/Ŵ = 0.5 (c, d) for

Ra = 3.5 × 105 (—), Ra = 3.5 × 106 (– –), Ra = 3.5 × 107 (– · –) and Ra =2.31 × 108 (– ·· –).

Ratio of (∂u′/∂xi)2/(∂θ ′/∂xi)2 for two Rayleigh numbers: Ra = 3.5 × 105 (e) and Ra = 3.5 ×
107 (f ).

the edge of the thermal boundary layer reflecting strong interactions between velocity
and temperature fluctuations. It is noted that the minimum of (∂u′/∂xi)2/(∂θ ′/∂xi)2

decreases to approximately one as Ra increases. This means that dissipation of
turbulent thermal energy becomes increasingly intense in the boundary layers as Ra
increases, whereas turbulent kinetic dissipation dominates the core.

3.2. Boundary-layer thicknesses

In figure 5 the profiles of the mean and r.m.s. values of temperature (averaged in
time and periodic direction) are plotted for the centre plane (x̂/Ŵ = 0.5) of the cell.
The typical natural convection temperature profile is found with a mean temperature
gradient in the bulk close to zero. We consider the small deviations from the zero
gradient and the arithmetic mean temperature of the top and bottom plates in this
region to be a result of the finite averaging time our numerical simulations are bound
to. The corresponding r.m.s. values clearly illustrate the decreasing thickness of the
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Figure 5. (a) Mean temperature profiles and (b) corresponding r.m.s. values of temperature

extracted at x̂/Ŵ = 0.5 for Ra = 3.5 × 105 (—), Ra = 3.5 × 106 (– –), Ra = 3.5 × 107 (–·–) and
Ra = 2.31 × 108 (–··–).

boundary layer as Ra increases. The close-up view of the r.m.s. profiles shows that
the thermal boundary layer is well resolved with about 10 grid points. Essentially by
definition the r.m.s. values must vanish towards the isothermal walls to comply with
the boundary conditions as pointed out by Verzicco & Sreenivasan (2008).

The viscous and thermal boundary layer thicknesses δu and δθ are determined
through the maximum r.m.s. value criterion (see e.g. Belmonte, Tilgner & Libchaber
1994) in the centre of the cell (x̂/Ŵ = 0.5). The extracted boundary layer thicknesses
are specified in table 1. The thermal boundary layer thickness is found to scale with
δθ ∼ Ra−0.291. Given that Nu = 1/(2δθ ) this result matches well with the observation
and theoretical prediction of Castaing et al. (1989) and the theoretical prediction of
Grossmann & Lohse (2004). It is also observed that the LES results do not yield
the same boundary layer thicknesses, but the Ra dependencies are very well extended
to higher Ra . Further figure 6 compares the results of the present study to data by
Hartlep, Tilgner & Busse (2005) obtained through DNS in a thin fluid layer. The
scaling δθ ∼ Ra−0.291 is given for reference and the thermal boundary layer thicknesses
are also plotted in compensated form in order to illustrate the good description of
the data by the least squares fit. The figure clearly shows the good agreement between
the two simulations, in particular for the thermal boundary layer thicknesses. Hartlep
(2004) found an exponent β =0.278 for the scaling of the thermal boundary layer
and a slightly thinner viscous boundary layer. We consider these small discrepancies
to be effects of the additional lateral walls of the rectangular cell. It can be seen that
in both simulations the thicknesses of viscous and thermal boundary layers decrease
at different rates, which was also found through the DNS of Verzicco & Camussi
(2003a) in a slender cylindrical cell and was theoretically predicted by Grossmann &
Lohse (2000, 2004).

3.3. Analysis of the turbulent fluctuations

Energy spectra of the velocity and temperature fields extracted from the periodic
direction and averaged in time are plotted in figure 7 for various wall distances for
three Ra revealing clear differences between the velocity and temperature fields.
Velocity spectra (a,b,c) approach the −5/3 power of the Kolmogorov-law (see
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Figure 6. Thermal and viscous boundary layer thicknesses δθ (closed symbols) and δu (open

symbols). Circles correspond to the presented simulations extracted at x̂/Ŵ = 0.5 and squares
to DNS simulations of an infinitely extended fluid layer by Hartlep (2004); The scaling
Nu ∼ Ra−0.291 is given for reference (—). Any horizontal trace in (b) is consistent with the
scaling exponent β = 0.291.

Oboukhov 1962) towards the centre of the cell which is indicated by the power
law fits and increasing wall distance is indicated by the arrows. Plots (d,e, f ), however,
show a −7/5 decrease in the equilibrium range, the so called Bolgiano (1959)
scaling, which is in agreement with findings by Verzicco & Camussi (2003a) and
Lohse (1994).

At the lowest Rayleigh number energy spectra of the velocity and temperature
fields show a distinct peak in the cell centre (ẑ/Ĥ = 0.5 and x̂/Ŵ = 0.5, indicated by
the power-law fits) for the wavenumber k = 2. This is due to the fact that a convective
pattern is formed in a way that two pairs of convection rolls are established. However,
as Ra increases the peak at k = 2 is vanishing in the temperature spectra and a second
peak begins to form at k =4 which is of similar strength as the one at k =2. This
indicates that the large-scale plumes begin to vanish and the flow is dominated by
increasingly smaller structures. Since temperature and velocity fields behave differently
in the bulk for Ra � 3.5 × 107, it is concluded that both fields begin to decorrelate
as far as the dominant structures of the flow fields are concerned once a fully



Thermal plumes in turbulent Rayleigh–Bénard convection 99

–6

–8

–10

–12

lo
g

1
0
 (

E
θ
 θ

)

–14

–16

–18

–6

–8

–10

–12

lo
g

1
0
 (

E
u i

 u
i)

–14

–16

–18

0 1 2

log10 (k)

0 1 2

log10 (k)

0 1 2

log10 (k)

(a) (b) (c)

(d) (e) ( f )

–5/3

–7/5

–5/3

–7/5

–5/3

–7/5

Figure 7. Kinetic (a, b, c) and thermal energy spectra (d , e, f ) recorded at x̂/Ŵ = 0.5 for all

grid points with ẑ/Ĥ � 0.5; (a, d ) Ra = 3.5 × 105, (b, e) Ra =3.5 × 106 and (c, f ) Ra = 3.5 × 107.
Arrows indicate increasing wall distance; the position of the power-law fit indicates the centre
of the cell.

developed turbulent flow is achieved. However, it is noticed that the thermal plumes,
independently of their size, maintain the large-scale convection rolls.

It is also noted that the thermal energy is not continuously increasing towards the
cell centre as observed for the velocity field. This is investigated in more detail by
analysing the energy of the temperature field Eθθ and the velocity field Euiui

held by
one particular wavenumber k, which is plotted in figure 8(a) for an arbitrarily chosen
k = 8 as a function of vertical wall distance at mid-span of the cell (x̂/Ŵ = 0.5). It
illustrates that turbulent kinetic energy is increasing towards the centre of the cell.
However, it is observed that outside the thermal boundary layer, but still inside the
viscous one, a kink is formed before it increases further. The kinks coincide with
the minimum of (∂u′/∂xi)2/(∂θ ′/∂xi)2 discussed in § 3.1. The temperature spectra
on the other hand show a distinct maximum at the edge of the thermal boundary
layer, which becomes increasingly pronounced as Ra increases and the level of
turbulent thermal energy held by one wavenumber is steadily decreasing towards
the centre. This indicates that there are strong interactions between both fields at
the edge of the thermal boundary layer emanating from the thermal plumes, since
this behaviour is not observed at the adiabatic walls illustrated in figure 8(b), where
only a viscous boundary layer is formed and the turbulent thermal fluctuations are
independent of the horizontal position. It is therefore concluded that the thermal
plumes which are ejected from the thermal boundary layers transform thermal energy
into kinetic energy. Consequently, the velocity field is still gaining turbulent kinetic
energy outside the boundary layers as the fluid is convected towards the opposite
conducting wall, whereas the temperature field loses thermal energy. This is consistent
with the conclusions drawn by Xi, Lam & Xia (2004) who argued that the thermal
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Figure 9. Correlation coefficient of the turbulent fluctuations of the velocity and temperature
fields at a single longitudinal position for Ra = 2.31 × 108 based on (a) the vertical velocity
fluctuations Cw′θ ′ and (b) the fluctuations of the velocity magnitude C|u|′θ ′ .

plumes generate vortices as they propagate towards the opposite plate, and hence
feed kinetic energy into the flow field.

The correlation coefficient Cw′θ ′ = w′θ ′/
√

w′2 θ ′2 is calculated at one position
midway between the lateral walls. Figure 9(a) clearly shows that the correlation
between the turbulent fluctuations of the temperature and vertical velocity fields
decreases from about 0.8 near the conducting walls to almost 0 in the centre.
The correlation coefficient based on the fluctuations of the velocity magnitude |u|′
illustrates nicely that both turbulent fields are strongly coupled within the boundary
layers and are only weakly (anti-)correlated in the core region. However, we think
this is overestimated due to very small turbulent fluctuations in the core, since the
correlation |u|′θ ′ does not yield such a strong anti-correlation.



Thermal plumes in turbulent Rayleigh–Bénard convection 101

10–7 10–5 10–3

ζ

10–1 101 103

0

–1

lo
g

1
0
(P

(ζ
))

–2

–3

–4

–5

–6

Ra = 3.5 × 105

Ra = 3.5 × 106

Ra = 3.5 × 107

Ra = 2.31 × 108
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4. Thermal dissipation rate analysis
In order to investigate the thermal dissipation rates and the contribution of different

features of the flow field to the heat transfer their probability density functions
(PDFs) have been evaluated using an exponential bin width �(n) ∼ (ζmax/ζmin)

n/500,
for n= 1, . . . , 500 and the ratio between the highest and the lowest normalized
thermal dissipation rates ζmax/ζmin = 108. Here ζ = εθ/〈εθ〉V is a thermal dissipation
rate normalized with the volume-averaged mean and P (ζ ) denotes its probability.

Figure 10 shows the PDFs of the thermal dissipation rates that have been calculated
from instantaneous flow fields. We associate thermal dissipation rates with ζ � 1 with
the temperature gradients in the vicinity of the conducting walls and ζ � 1 with the
bulk flow where temperature fluctuations dominate over dissipation rates due to the
low-mean gradient.

Due to intermittency effects the tails deviate increasingly from the Gaussian
distribution at high Ra . Figure 10 also shows that the Gaussian distribution falls
below P (ζ ) for ζ � 1, which is in agreement with observations for passive scalars
by Schumacher & Sreenivasan (2005). The differences compared to the passive
scalar convection PDFs for ζ > 1 are therefore considered to be a result of the
thermal plumes and boundary layers. It can be seen that the PDFs have very
similar tails and a maximum that becomes increasingly pronounced with a gradient
around ζ ≈ 1 that steepens significantly as Ra increases. This indicates that at high
Rayleigh numbers a distinct separation between high and low thermal dissipation rates
occurs.

The shape of the PDFs and their behaviour with increasing Ra further suggests
that the thermal dissipation rates can be divided into three regions. In order to
separate small and large thermal dissipation rates, the two inflection points of the
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Figure 11. (a) Example of a thermal dissipation rate distribution derived from Ra = 3.5 × 107

data showing the overall PDF (�) and the contributions from the three subdomains: region a
core: (�), which can be approximated with a stretched exponential (—), region b conductive
sublayer: (�) and the exponential fit (– · –) and region c intermediate layer: �. (b) Local
slope of the same PDF illustrating the definition of the limits of region I which is the
bulk-turbulence-dominated region and region III which is the conduction-dominated region.
The intermediate regime II is associated with the thermal plumes and outer boundary layers.

PDF are taken to distinguish between the three regions as indicated by the sample
PDF shown in figure 11. Following the above assumption, the regions represent
I the bulk flow,
II the plumes/mixing layers and
III the conductive sublayers,

and hence are associated, respectively, with parts of the flow that are dominated
by passive scalar convection (since there are no significant temperature differences),
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3.5 × 107

3.5 × 105 3.5 × 106 2.31 × 108

Ra DNS DNS DNS LES LES

ζ(Pmax ) 4.67 × 10−2 5.91 × 10−2 7.38 × 10−2 7.57 × 10−2 6.30 × 10−2

ζI–II 0.169 0.495 0.971 0.887 0.978
ζII–III 0.879 3.16 6.56 7.47 11.5

A1 1.806 × 10−1 1.884 × 10−1 1.672 × 10−1 4.017 × 10−1 4.294 × 10−1

A2 3.915 2.464 1.998 2.879 2.967
α 1.034 0.993 0.993 0.838 0.752

B1 7.089 × 10−2 3.587 × 10−2 2.544 × 10−2 2.354 × 10−2 0.952 × 10−2

B2 8.536 × 10−2 4.419 × 10−2 2.890 × 10−2 2.712 × 10−2 1.263 × 10−2

σ 16.22 16.76 16.98 16.87 19.13
S −0.250 −0.248 −0.245 −0.247 −0.257
K −2.926 −2.924 −2.925 −2.925 −2.924

σa 12.77 14.90 15.16 15.21 17.41
Sa −0.355 −0.303 −0.295 −0.291 −0.291
Ka −2.862 −2.900 −2.902 −2.905 −2.906

σb 7.821 4.898 4.191 3.057 2.136
Sb −0.384 −0.265 −0.045 0.483 0.864
Kb −2.768 −2.524 −2.351 −1.915 −0.778

Table 2. Location of the maximum and inflection points of the PDFs as a function of Ra , the
coefficients B1 and B2 of the least-squares fit obtained through (4.1) and the coefficients A1, A2

and α of (4.2) obtained through a least-squares fit of the ensemble data set for ζlimit > 10 ζ(Pmax ).
Standard deviation σ , skewness S and kurtosis K of the thermal dissipation rate PDFs.

turbulent mixing and conduction at the walls (where the strongest gradients are
found).

The thermal dissipation rates associated with the inflection points and the maximum
contribution are given in table 2. Both inflection points are moving towards higher
thermal dissipation rates and the range of dissipation rates between these points
increases. In order to support the above approach of the separation of the thermal
dissipation rates, PDFs are calculated not only for the entire volume but also for
specific parts of the flow field. Here, plumes and boundary layers are thought to be
fluid with |θ | > |θe|, where θe is the temperature at the edge of the thermal boundary
layer specified by table 1. Consequently contributions from this region should equal
those of regions II and III together. In contrast to the previous approach, where the
bulk flow was defined as the region containing only small ζ, we now evaluate the
core region of the flow by cutting a cubic subdomain out of the centre of the cell. The
boundaries of this box are defined to be just outside the mean viscous and thermal
boundary layers specified in table 1. However, fluid with |θ | > |θe| is neglected during
the evaluation of the core region. Hence, one obtains three regions

(a) core without |θ | > |θe| fluid,
(b) boundary layers and plumes (|θ | > |θe|),
(c) intermediate layer (remainder),

whose sum yields the overall PDF again. It is also worth pointing out that we
intentionally distinguish between the bulk, i.e. region I, which by definition contains
only small thermal dissipation rates, and the core, i.e. region a which is mainly
geometrically defined.
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Figure 12. Close-up view of the thermal dissipation rate distribution in a vertical section
through the cell. Isolines in dark grey represent thermal dissipation rates of regime III and
light grey isolines represent those of regime II. Isothermal lines (– –) with 0.1 � |θ | � 0.45 are
given for reference; Ra = 3.5 × 107.

The sample PDFs illustrated in figure 11 highlights that the tails of region a and
region I largely coincide, but region a also contains larger thermal dissipation rates.
Comparing the contributions of regions a–c to the small ζ contributions of the overall
PDF, i.e. region I, we conclude that the core region a is a subset of the bulk I. By
definition the latter extends to the sidewalls, so that regions a and c should show the
same tendencies as region I. Similar result is found for regions b and III, whose tails
are almost identical. Region II on the other hand is dominated by contributions from
b, but core and intermediate layers still have a significant influence on this region,
which to some extent are effects of entrainment due to the thermal plumes. Therefore
we refer to region II as the plume and mixing layer dominated region.

This region separates the bulk flow I from the conductive sublayer III. In order to
illustrate the spatial distribution of the thermal dissipation rates of regions II and III
isolines of their dissipation rates are plotted in figure 12 together with isolines of
temperature. It can be seen that dissipation rates of region III (shown in dark grey)
correspond to regions where the isothermal lines are almost parallel indicating that
this region is conduction-dominated. Furthermore, the intermediate region II is found
to correlate rather well with the mixing layers and thermal plumes rising (or falling)
from the hot (or cold) walls, whereas region I contributions are mainly found in the
bulk.

From the above definitions of the bulk flow, the plumes and the conductive sublayer
the respective contributions of these features can be estimated. The results of this
approach will be further discussed in § 4.3.
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Figure 13. PDFs of the time series of region III for the thermal dissipation rates associated
with the conductive sublayer are shown together with least-squares fits (– – –).

4.1. Thermal dissipation rates in the boundary layers

From the statistically averaged temperature profile the mean temperature at the
edge of the thermal boundary layer θe is taken to separate the thermal boundary
layers and plumes, which are considered to contain fluid with |θ | > |θe|. However, this
criterion is based on averaged quantities and is applied to instantaneous flow fields
and therefore not sufficient to separate the instantaneous thermal boundary layers
from the effects of turbulent intermittency in the bulk. This results in a cross-over
region of the dissipation rates ζ ≈ 1 associated with regions a and b as indicated
by figure 11. Nonetheless this analysis underlines that very high thermal dissipation
rates are primarily found in the near-wall region. It could be concluded that high
thermal dissipation rates are due to the mean temperature gradients near the walls,
but figure 4(d) shows that the fluctuations of the thermal dissipation rate increase in
the vicinity of the conducting walls and decrease only in the outer boundary layers
(which we refer to as the mixing layers) and the core.

Furthermore region b largely coincides with region III and follows an exponential
scaling of the form

P (ζ � 1) = B1 exp(−B2 ζ ). (4.1)

PDFs are calculated for the region b over a long period of time. The coefficients
of (4.1) are determined for the ensemble average of ζ > 2 ζII−III . The data and the
corresponding least-squares fits are shown in figure 13. Since the exponent B2 of the
right tail becomes smaller, it is concluded that with increasing Ra a broader range of
dissipation rates becomes important. This is in agreement with observations detailed
at the beginning of § 4.

Time series of B2 is provided in figure 14. They show an oscillating behaviour of
the exponent for all Rayleigh numbers, which is associated with the shedding of the
plumes from the boundary layers. During the ejection of a plume fluid of high



106 M. Kaczorowski and C. Wagner

Δt = 10

0.06

0.05

B2

0.04

0.03

0.02

0.01

–2.8

–2.6

K–2.4

–2.2

–2.0

(a)

(b)

Figure 14. Time series of the exponent B2 (—) of (4.1) and the kurtosis of the PDF of region
b (– ·· –) for (a) Ra = 3.5 × 106 and (b) Ra = 3.5 × 107. The dashed lines indicate the ensemble
average given by table 2.

εθ is convected away from the wall, leading to a smaller probability of
high thermal dissipation rates, and thus larger B2. It can be seen that with
increasing Ra the frequency of the plume ejection increases, indicating that
smaller plumes are ejected more rapidly. The shedding period Tshed obtained
from the time series for Ra = 3.5 × 106 and Ra = 3.5 × 107 are Tshed ≈ 9.7 and
Tshed ≈ 5.6, respectively. However, it is noted that the time series of the kurtosis
K =(

∑
i log(ζi)

4P (ζi))/(
∑

i log(ζi)
2P (ζi)) − 3 of the PDFs calculated from region b

are significantly smoother, but still reflect an increasingly unsteady behaviour. It is also
observed that K is increasing from approximately −3 to −0.8 between Ra =3.5 × 105

and 2.31 × 108 with the largest change of K occurring between Ra = 3.5 × 107 and
2.31 × 108 (see table 2). This reveals that the thermal boundary layers change
dramatically when a fully developed temperature field is achieved. Furthermore,
comparison of the statistical moments of the PDFs given by table 2 emphasizes
that the boundary layers of the LES are most affected by the reduced resolution of
the core region. It can be seen that the core region PDFs are almost identical, for
the DNS and LES results at Ra = 3.5 × 107, but those of the boundary layers differ
significantly.

4.2. Thermal dissipation rates in the core

The PDFs obtained in the core region a of the flow field are provided by figure 15.
Comparison with region III of the overall PDFs reveals that most of the small ζ

contributions of figure 10 are due to the core region. The detailed view of this
region shows a picture similar to the results obtained in passive scalar convection (see
Schumacher & Sreenivasan 2005); the probability density functions of the thermal
dissipation rates are neither symmetric nor Gaussian. For very small ζ the Gaussian
function falls below the PDFs, reflecting strong intermittency effects of the small
scales. The right tail was fitted with a stretched exponential function for ζ > 10 ζ(Pmax )

P (ζ > 10 ζ(Pmax )) =
A1√

ζ
exp(−A2 ζ α/2), (4.2)
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Figure 15. PDFs of the core region (a) with their respective least-squares fits (– – –); the
vertical dashed line indicates the mean thermal dissipation rate. The inset shows the same
PDFs on a log–log scale to illustrate the distribution of the small thermal dissipation rates.

which was analytically derived for passive scalar turbulence in the limit of large
Pr and Peclét numbers by Chertkov, Falkovich & Kolokolov (1998) and Gamba &
Kolokolov (1999) who found α = 2/3. The coefficients obtained through least-squares
fits of the ensemble average are given in table 2. It is observed that the coefficients
A1 and A2 seem to have a minimum around Ra ≈ 107, whereas α ≈ 1 is found for
Ra � 107 and it seems to be decreasing once the flow has become fully turbulent. Thus
there seems to be a tendency for α to approach the theoretically predicted passive
scalar scaling at high Ra . As for the overall PDFs it is found that intermittency
effects of the tails are increasing and the maximum of the function is shifted towards
the volume-averaged dissipation rate for Ra < 3.5 × 107 and moves towards smaller
ζ again at Ra = 2.31 × 108. This behaviour reflects that the flow field undergoes a
significant change from developing (soft) turbulence at Ra < 3.5 × 107 to a fully
developed turbulent temperature field at Ra = 2.31 × 108, when the shape of the
PDF’s right tail begins to change from an exponential to a stretched exponential
function as can be seen from table 2. Thus in the core region two important effects
are observed: a continuous decrease of ε ′

θ and a change of the PDF’s tail once the
temperature field has become fully turbulent.

Time series of the parameters A2 and α obtained through least-square fits of the
respective instantaneous flow shows that the exponent α is fluctuating with noticeable
spikes representing rare but extreme events. This is also reflected by the temporal
behaviour of the kurtosis K of the core region PDFs calculated from the instantaneous
flow fields. Figure 16 illustrates that the ensemble average of K decreases with Ra ,
i.e. the PDFs of the core region become flatter, but it is also observed that there are
noticeable spikes of relatively high K . This reveals that a broad range of thermal
dissipation rates becomes more equally distributed in the core region as Ra increases
and the flow is rarely disturbed by the thermal plumes.



108 M. Kaczorowski and C. Wagner

3.5 × 107

3.5 × 105 3.5 × 106 2.31 × 108

Ra DNS DNS DNS LES LES

core 〈εθ 〉a/〈εθ 〉V 0.04 (0.04) 0.08 (0.07) 0.11 (0.11) 0.10 (0.10) 0.10 (0.10)
bl and pl 〈εθ 〉b/〈εθ 〉V 0.75 (0.29) 0.76 (0.29) 0.70 (0.28) 0.71 (0.28) 0.67 (0.27)
intermediate 〈εθ 〉c/〈εθ 〉V 0.21 (0.10) 0.16 (0.09) 0.19 (0.11) 0.19 (0.11) 0.22 (0.14)

bulk 〈ε〉I/〈εθ 〉V 0.12 (0.03) 0.11 (0.06) 0.12 (0.10) 0.12 (0.10) 0.10 (0.07)
pl and mixing layers 〈ε〉II/〈εθ 〉V 0.54 (0.32) 0.67 (0.30) 0.73 (0.27) 0.74 (0.25) 0.75 (0.17)
conductive sublayer 〈ε〉III/〈εθ 〉V 0.34 (0.06) 0.22 (0.09) 0.15 (0.11) 0.14 (0.10) 0.15 (0.06)

Table 3. Contributions of regions a to c (top) and regions I to III (bottom) to the volume
averaged thermal dissipation rate. Values in brackets specify the contributions of the turbulent
fluctuations to the contributions of the volume-averaged mean.

(a)

Δt = 10 Δt = 10

–2.89

K –2.90

–2.91

(b)

Figure 16. Kurtosis K of the core region PDF for (a) Ra =3.5 × 106 and (b) Ra = 3.5 × 107

as a function of time t . The dashed lines (– –) indicate the ensemble average specified in
table 2.

4.3. Thermal dissipation rate contributions

In order to analyse the contributions of different flow field features to the volume
averaged thermal dissipation rate, the respective PDFs of regions a–c of each
instantaneous flow field of a time series are integrated. Hence, the contribution from
these regions can be quantified. Additionally the contributions due to the turbulent
fluctuations are investigated by subtracting contributions due to the mean temperature
gradient. The results are given in table 3 and compared to the contributions estimated
through the integration of regions I to III provided by the same table.

It follows from table 3 (top) that the relative contribution from the subdomain
representing the core region a increases with Rayleigh number until a fully developed
turbulent temperature field is achieved. Integration over the bulk (region I) on the
other hand shows that its contribution remains approximately constant in the range
of Ra considered. This implies that heat dissipation is redistributed from the sidewalls
to the core region. In their experiments Zhou & Xia (2002) found that the thermal
plumes are predominately rising along the sidewalls. However, at sufficiently high Ra
increasingly more plumes seem to be propagating through the interior cell which can
also be seen from the instantaneous flow fields presented in figure 3. Shishkina &
Wagner (2007b) have shown that the distribution of the local heat fluxes perpendicular
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to the vertical walls becomes more uniformly distributed with increasing Ra , implying
an increasing core contribution. Analysis of the fluctuating component of the thermal
dissipation rates shows that contributions due to the mean temperature gradient
are negligible in the core which is consistent with experimental results by He et al.
(2007). On the other hand turbulent fluctuations of the bulk region increase and
thus approach the behaviour of the core, since mean gradient contributions near the
adiabatic walls decrease rapidly as Ra increases. This suggests that the effect of the
adiabatic sidewalls on the flow is reduced as Ra increases.

It also follows from the table that contributions of plumes and boundary layers,
i.e. the sum of the contributions of regions II and III, are approximately constant.
Contrary to this contributions due to region b slightly decrease with Ra , whereas the
intermediate layer contributions increase again for Ra > 3.5 × 107. This is certainly
the case because the condition for separating the plumes and boundary layers
by a temperature threshold based on the mean temperature at the edge of the
boundary layer is not sufficient, since effects of intermittency cannot be distinguished.
However, table 3 (bottom) illustrates that the conductive sublayer contributions
become less important as Ra increases. This indicates that the plumes despite their
decreasing size are convecting increasingly more heat as Ra increases. On the other
hand the contributions of the sublayer region due to turbulent fluctuations increase
significantly from about 18 % to 73 % from the lowest to the highest Ra . Therefore
it has to be pointed out, that with increasing Ra turbulent thermal fluctuations
play an important role in the near-wall region. Despite the fact that the plumes
and mixing layers contribute increasingly more to the heat transport, it is observed
that their contributions due to turbulent fluctuations decrease which agrees with
findings by He et al. (2007). Therefore, we summarize that increasing buoyancy forces
acting on the plumes result in a more turbulent sublayer caused by the impact of
the oncoming plumes, whereas the plumes are less disturbed by the surrounding
turbulence.

5. Conclusions
Three DNS and two high-resolved LES have been performed in the range

3.5 × 105 � Ra � 2.31 × 108. The a posteriori estimated Kolmogorov and Batchelor
scales show that the resolution of the DNS is sufficiently high, whereas in the LES
only the boundary layers are well resolved and the grid spacing in the core region is
of the same order of magnitude as the Kolmogorov scales. Two major analyses are
carried out, the first concentrating on the interaction between the temperature and the
velocity fields and the second focusing on the evaluation of the thermal dissipation
rates that are associated with different features of the flow.

The analysis of the PDFs of the thermal dissipation rates highlights that there exist
three distinct regions that are dominated by the turbulent background or bulk I and
the conductive sublayer III, which are separated by dissipation rates dominated by
the plumes and mixing layers II. These regions are separated by the two inflection
points of the thermal dissipation rate PDFs. It was shown that the core region a and
the intermediate layer c together give a good representation of the bulk region I.
Furthermore the tails of the PDFs of regions I and III correlate very well with the
respective PDFs of the subdomains a (core region) and b (conductive sublayer).

The investigation of the core region reveals that the turbulent thermal dissipation
rates have a complex three-dimensional distribution at low Rayleigh numbers and are
more evenly distributed at the highest Ra . This suggests that turbulent mixing rather
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than buoyancy begins to dominate this region. This argument is supported by the
analysis of the turbulent fluctuations of the temperature and the velocity field. At high
Ra, |u|′ and θ ′ are only weakly correlated in the core and increasingly less turbulent
thermal energy is contained in the core region as Ra increases. Therefore, the core
region is hardly affected by buoyancy at high Ra , which is why the thermal dissipation
rates are beginning to form a plateau as Ra increases, but show a more complex
distribution at lower Ra , where the flow is not sufficiently mixed and buoyancy effects
can be observed. A comparison of the PDFs of the thermal dissipation rates with a
theoretically predicted scaling law by Chertkov et al. (1998) and Gamba & Kolokolov
(1999) suggests that with increasing Ra the core region is slowly approaching the
behaviour of a passively mixed scalar. However, the simulated Ra are not sufficiently
high to prove this behaviour. By integration of the PDFs of the bulk (region I) and
the core (region a), it is found that the dissipation of heat near the adiabatic walls is
decreasing and is increasing in the core, which reflects an increasing propagation of the
plumes through the centre. Evaluation of the fluctuating components of the thermal
dissipation rates reveals that contributions due to the mean temperature gradient are
negligible in the core which is in agreement with experimental findings by He et al.
(2007). However, we find that in the range of Ra considered the contributions of the
core region increase with Ra even though the thermal dissipation rates in the bulk
decrease as stated by He et al. (2007).

The analysis of the thermal dissipation rates of the boundary layers including the
plumes (sum of region II and III) reflects that their contribution is constant over
the simulated range of Ra . On the contrary contribution from region b, i.e. the
plumes and boundary layers separated through |θ | > |θe| decreases slightly with Ra .
This shows that effects of intermittency grow and parts of the boundary layer
and plumes region are not detected through the temperature threshold criterion.
Integration of the PDFs of region II reveals that with increasing Ra the plume-
dominated region contributes increasingly more to the volume-averaged thermal
dissipation rate. The thermal dissipation rate contributions of region III on the other
hand are reduced by approximately the same amount, which seems logical given that
convective heat transport becomes increasingly important at high Rayleigh numbers.
This is also supported by the results obtained by calculating the contributions of
the fluctuating components ε ′

θ to region b showing that their contribution to the
boundary layer’s thermal dissipation rate is increasing from 37 % at Ra = 3.5 × 105 to
42 % at Ra = 3.5 × 107. Here, our results contradict findings by He et al. (2007) who
experimentally measured a decrease of the fluctuations of the thermal dissipation rates
in the near-wall region, whereas we find an increasing contribution of the fluctuations
to the boundary layer dissipation rates. It was also shown that ε ′

θ increases in the
vicinity of the conducting walls. Hence, we conclude that He et al. (2007) measured
the fluctuations in the boundary layer, but not within the conductive sublayer where
we find the contrary to their findings. Therefore, we come to the conclusion that the
conductive sublayer and the plumes/mixing layers behave dynamically different. A
comparison of the kinetic and thermal dissipation rates has shown that their ratio
is reduced from approximately 1.4 to unity from the lowest to the highest Ra . This
highlights that there are increasingly stronger interactions between the temperature
and the velocity fields which are underlined by a strong correlation of the velocity
and the temperature fluctuations near the wall, whereas the opposite is found in the
core region. The different dynamics of both fields are also reflected by the turbulent
energy of the different scales, since the maximum turbulent thermal energy is located
at the edge of the thermal boundary layers, whereas the turbulent kinetic energy
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is further increasing towards mid-cell. Furthermore, no characteristic thermal scales
could be observed at high Ra , but a large-scale wind was still maintained.

In order to further verify the assumption that region II represents the plume-
dominated thermal dissipation rates it might be desirable to set different threshold
values for each horizontal plane, to separate plumes and boundary layers more
adequately as suggested by Shishkina & Wagner (2008).

Time series of the least-squarefit coefficients of the conductive sublayer PDFs was
used to estimate a dimensionless global plume shedding frequency of 0.2–0.1. However,
time series of the kurtosis of the boundary layer PDFs does not yield such strong
fluctuations, but tends to show a much slower oscillation.

Finally, the increasing gradient of the thermal dissipation rate PDFs for ζ ≈ 1
implies that a distinct boundary between the thermal dissipation rates associated
with the bulk flow and the plumes/boundary layer regions is formed. Hence, it is
concluded that the assumption to split the thermal dissipation rates into contributions
from plumes (including boundary layers) and the background as stated by (1.3) is
indeed reasonable. However, we would like to point out that a relatively smooth
transition of the probability of the thermal dissipation rates from regions I (bulk) to
III (conductive sublayer) is observed for the lowest simulated Ra . At high Ra on the
other hand the thermal plumes seem to play a crucial role, linking regions I and III.
This is also reflected by their increasing contribution to the mean heat transport.
Hence, we conclude that at high Ra the contributions of the thermal plumes to the
mean heat transport must not be neglected, which supports the argument by the
Grossmann–Lohse theory. However, our results have shown that ε̂θ,plume might be
separated into contributions due to the conductive sublayers and the plumes/mixing
layers.

The authors would like to thank Olga Shishkina and Jörg Schumacher for fruitful
discussions and their suggestions. This work was supported by the Helmholtz
Association (HGF) through the project Virtual Institute – Thermal Convection.

REFERENCES

Belmonte, A., Tilgner, A. & Libchaber, A. 1994 Temperature and velocity boundary layers in
turbulent convection. Phys. Rev. E 50 (1), 269–279.

Bolgiano, R. 1959 Turbulent spectra in a stably stratified atmosphere. J. Geophys. Res. 64 (12),
2226–2229.

Castaing, B., Gunarante, G., Heslot, F., Kadanoff, L., Liebchaber, A., Thomae, S., Wu, X.,

Zaleski, S. & Zanetti, G. 1989 Scaling of hard thermal turbulence in Rayleigh–Bénard
convection. J. Fluid Mech. 204, 1–30.

Chertkov, M., Falkovich, G. & Kolokolov, I. 1998 Intermittent dissipation of a passive scalar in
turbulence. Phys. Rev. Lett. 80 (10), 2121–2124.

Gamba, A. & Kolokolov, I. V. 1999 Dissipation statistics of a passive scalar in a multidimensional
smooth flow. J. Stat. Phys. 94, 759–777.

Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech.
407, 27–56.

Grossmann, S. & Lohse, D. 2004 Fluctuations in turbulent Rayleigh–Bénard convection: the role
of plumes. Phys. Fluids 16 (12), 4462–4472.
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